KernelCAD Documentation

DInsight Home
Skip Navigation Links.
Start page
Quick Start
Installation
Overview of the software
What is new
Collapse KernelCAD ModelsKernelCAD Models
Model Structure
Securing Models
Collapse Import/ExportImport/Export
Import and Export
Collapse Adanced Data ExchangeAdanced Data Exchange
Data Flow Sample
STL Tree
IDataContext Interface
ISTLDataContext Interface
Collapse Scene ItemsScene Items
Items
3D Text
Smart Labels
View Points
Collapse MeasurementsMeasurements
Measurements
Persistent Measurements
Grid
Collapse SectionsSections
Sections
Section Types
Collapse 2D2D
Overlays
2D Models
2D Items
Point Sets
Collapse Line and Curve SectionsLine and Curve Sections
Line Strips
Line Section
3DS Curves
Collapse Surface and Solid SectionsSurface and Solid Sections
Surfaces
Collapse Mesh SectionsMesh Sections
Mesh Section
Mesh
Surface Of Revolution
BRep 3D Objects
Collapse BRep BSpline objectsBRep BSpline objects
Bspline objects
BSpline Faces
BRep Section
Pipes
Collapse 3DS Sections3DS Sections
3D Section
Profiles
Surface Patches
Surfaces and Patch Strips
Collapse AttributesAttributes
Material
Clipping Planes
Symmetries (Arrays)
Textures
Collapse OperationsOperations
Boolean Operations
Surface Trim
Cut Surface
Collapse MovementsMovements
Movements
Kinematic Sections
Collision Detection
3D Grid
Collapse Mathematical ObjectsMathematical Objects
Pure Geometric Objects
Points and Vectors
Planes
Collapse CurvesCurves
Straight Lines
3D Circle
Ellipse
Free-Form Curves
Arc Spline Curves
Frames
Transfroms
Oriented Boxes
Collapse 2D Elements2D Elements
Geometric Elements
Arcs
Line Strips
Collapse Basics of 3D GraphicsBasics of 3D Graphics
Concepts
3D View
2D View
Viewing Volume
Birds Eye View
Viewing Plane
Perspective View
Background
Collapse AlgorithmsAlgorithms
Euclidean Shortest Path
Collapse User DataUser Data
Layers
Object User Data
Model User Data
Collapse KernelCAD ComponentsKernelCAD Components
KernelCAD Control
KernelCAD .NET Control
Methods and Properties
Menu
Model Explorer
Birds Eye View
Programming
Direct User Access
Direct Operations
Interface Queries
Printing Support
Data Types
Modes of KernelCAD Control
DIObjectGenerator class
Properties
FlatObjectArray Poperty
Context
64 bit development
Dual Mode
Initialisation Context
Overlay Editor
Memory Management
Input validation
Collapse Advanced functionalityAdvanced functionality
Topological Modifications
Programming commands
Dynamic model restructuring
Dynamic Object Creation
Generator of 3D Sections
Generator of SOR Objects
Model class
Selection
Selection Event
External Models
Collapse InterfacesInterfaces
Alphabetical list
I3DGrid
I3DBugger
I3Dpt
IAxiBase
IAxis
IBoolSection
IBoolSectionEx
IBoundary
IColor
IConstraint
IData
IDiffSurface_KC
IDIFont
IDraw
IDrawUtil
IDraw2
IElem
IElement
IKCLine
ILightSource
ILocation
ILocationEx
IMaterial
IMetrics
IMetrics2
IModel
IModel2
IModelEx
IPatch
IKCPathCollisionDetector
IProfiles
IPropertyArray
IPropertyArray2
IStdShape
IStrip
ISurface
IText
ITexture
ITransform
IUnknown
Collapse Open Cascade TechnologyOpen Cascade Technology
IKO_Standard_Object
IKO_Model
IKO_TopExp_Explorer
Collapse BRepExtremaBRepExtrema
IKO_BRepExtrema_DistShapeShape
Collapse Geom2dGeom2d
IKO_Geom_CylindricalSurface
IKO_Geom_ElementarySurface
IKO_Geom2d_Circle
IKO_Geom2d_Conic
IKO_Geom2d_Curve
IKO_Geom2d_Geometry
IKO_Geom2d_Line
Collapse GeomGeom
IKO_Geom_BSplineCurve
IKO_Geom_BSplineSurface
Collapse GPGP
IKO_gp_Ax1
IKO_gp_Ax2
IKO_gp_Ax22d
IKO_gp_Ax2d
IKO_gp_Ax3
IKO_gp_Circ2d
IKO_gp_GTrsf2d
IKO_gp_Lin2d
IKO_gp_Mat2d
IKO_gp_Object
IKO_gp_Sphere
IKO_gp_Cone
IKO_gp_Torus
IKO_gp_Trsf
IKO_gp_Cylinder
IKO_gp_Pln
IKO_gp_Circ
IKO_gp_Trsf2d
Collapse GeomAPIGeomAPI
IKO_GeomAPI_PointsToBSpline
IKO_GeomAPI_Interpolate
Collapse TColStdTColStd
IKO_TColStd_Array1
IKO_TColStd_Array1OfInteger
Collapse TColgpTColgp
IKO_TColgp_Array1OfPnt
IKO_TColgp_Array1OfVec
Collapse BRepBRep
IKO_BRep_Builder
Collapse BRepBuilderAPIBRepBuilderAPI
IKO_BRep_Builder
IKO_BRepBuilderAPI_MakeWire
IKO_BRepBuilderAPI_MakeEdge
Collapse BRepOffsetAPIBRepOffsetAPI
IKO_BRepOffsetAPI_ThruSections
Collapse BRepPrimAPIBRepPrimAPI
IKO_BRepPrimAPI_MakePrism
Collapse ModModelingAlgorithmsModModelingAlgorithms
IKO_BRepGProp_Face
Collapse TopoDSTopoDS
IKO_TopoDS_Shape
IKO_TopoDS_Edge
IKO_TopoDS_Face
IKO_TopoDS_Wire
Collapse DataData
Collapse Import / ExportImport / Export
IDataConvert_KC
ICADFormat_KC
IDataContext
ISTLDataContext
IFormatVersionDataContext
Collapse User Data User Data
ILayers
IDataSource
IDataTable
IRecordSet
IDataMods
IUserData
IMatrixData
Collapse MovementMovement
IKinematicSection_KC
IMove_KC
IKinematicSet_KC
ICutEffect_KC
ISpinEffect_KC
Collapse FramesFrames
I3DObject
IFrame
IFrame2
IFrame3
IFrameEx
Collapse Oriented ObjectsOriented Objects
IObjectOriented
ISphere_KC
IBox
Collapse SectionsSections
Collapse ItemsItems
IItem
ILabel3D_KC
IDynamicScreenItem_KC
IDynamicScreenItemManager_KC
ISmartLabelManager_KC
ISection
ISection2
ISectionPointSet
ISectionLineStrip
ITextSection_KC
IPipeSection
ILineSection_KC
IObjectPosition_KC
ISticky_KC
ILabelSection_KC
IModelHealer_KC
IPointCloud_KC
IProfiledElement_KC
Collapse Mesh interfacesMesh interfaces
IMesh
IMeshTopol
ISimplex
IMeshMods
IVertex
IMeshEx
IIterator
IMeshPointKC
ISurfacePointKC
ISurfaceMetric_KC
IVertexEx_KC
IEdge_KC
ISimplexEx_KC
IMeshAlgor
IMeshShading_KC
Collapse GeneralGeneral
Collapse Collections InterfacesCollections Interfaces
IArray
IArray2
IList
IListUnkn_KC
IRelation
IArrayNum
IArray3D
IRefMap_KC
IObject_KC
ITypeBasic_KC2
IModelSearch_KC
IBitmap
IBlob
IKCContext
IKCContext2
IError_KC
IKCStack
ILineStyle_KC
IMenu_KC
IMenuItem_KC
IGlobalAPI_KC
IControlInitialisationContext_KC
IRange
IRectangleAxisAligned_KC
Collapse Topological InterfacesTopological Interfaces
IStripTopol
I3DSectionGenerator
ISORSectionGenerator 
IDIObjGenerator
Collapse Viewing InterfacesViewing Interfaces
IView
IView2
IViewPoint
IViewPointArray
ILookAt
IViewModal
ILook
ILookEx
IMeasurement_KC
IPick
ISelection_KC
IRectangleColor_KC
I2DView_KC
I2DView2_KC
I2DEditor_KC
IPrint_KC
IVirtualView
IGraphicItem
Collapse Lines And CurvesLines And Curves
ILine
ILineGeom
ILineMetr
ICurve
ICurveFreeForm
ICurveFreeFormEx
IArcSpline3DCurve
IArc
IArcEx
ICircle3D_KC2
IEllipse_KC
Collapse Symmetry InterfacesSymmetry Interfaces
ISymmetries
ISymmetry
IAxialSymmetry
Collapse Clipping plane interfacesClipping plane interfaces
IClipArray
IClipPlane
Collapse AlgorithmsAlgorithms
IEuclideanShortestPath_KC
Collapse 2D Geometry2D Geometry
ILine2D
IArc
IArcEx
IStripArcLine_KC
Collapse Programming Samples and TutorialsProgramming Samples and Tutorials
Collapse OverviewOverview
Sample List
3DBugger
BoolOp
PlanarOps
Calculator
Capture
Cannon
Clip
Cloud
Collision
Collision Path
Cross View
Data Flow
Data Flow
Deploy Tutorial
DiffSurface
Direct User Access Demo
DIView
eMotion
Euclidean Shortest Path
Gear
Label
LabelEx
Layers
Light
Lines
LowDim
Make Your Move
Measure
Mesh Mods
MeshOps
Metrics
MiniCAD
Modal
Modeling Curves
Morph
Object Array
Overlay
Patch
Patchwork
Pick
Point Of View
BoolOp
Profile
Rotation
Pipes
Layers
Shape Explorer
Smart Labels
Strip Topology
Surface Metrics
Symmetry
Transform
Texture
Turbine
TwoD
User Data
View Point
WpfCAD
Zoom
Collapse DeploymentDeployment
Deploy Tutorial
DeployModule
DeployWixBasic
WixDeploy
Collapse .NET Samples.NET Samples
Collapse C# SamplesC# Samples
Patch Tutorial
MiniCAD Sample
Strip Topology Sample
DI View Sample
Modal View Sample
Modeling Curves
Label
LabelEx
Pick
Object Array
Data Flow
Profile
Cross View
Low Dim
Morph
Clip
BoolOp
Collision
Collision Path
3DBugger
Data Flow
Shape Explorer
Smart Labels
Symmetry Sample
Cannon
View Point Sample
Capture
User Data
Layers
Zoom
Collapse Visual Basic SamplesVisual Basic Samples
Patch Tutorial
DI View Sample
MiniCAD Sample
Object Array Sample
BoolOp
Data Flow
Pipes
Transform
Measure
Mesh Mods
Mesh Ops
Metrics
Morph
TwoD
eMotion
Cross View
3DBugger Tutorial
Collision
Collision Path
Light
Patchwork
Capture
Collapse WPFWPF
Clip
Mesh Ops
Measure
Lines
LowDim
WPF
Patch
Collapse Delphi SamplesDelphi Samples
3DBugger
BoolOp
Calculator
Patch Sample
Modelling Curves
MiniCAD Sample
Morph
Shape Explorer
Object Array
Metrics
Cannon
Pipes
Patchwork
Collision
Collapse C++ SamplesC++ Samples
3DBugger
BoolOp
Cannon
Capture
Cloud
Collision
Collision Path
Cross View
DI View Sample
eMotion
Gear Sample
Label
LabelEx
Light Sample
Measure
Mesh Ops
MiniCAD Sample
Modal Sample
Modeling Curves
Object Array Sample
Overlay Sample
Patch Tutorial
Pick
Point Of View
Planar Ops
Rotation Sample
Profile Sample
Shape Explorer
Smart Labels
Strip Topology Sample
Layers
Lines
LowDim
Metrics
Metrics2
Morph Sample
Patchwork
Pipes
Symmetry Sample
Texture Sample
Transform
TwoD
Turbine Sample
User Data
View Point Sample
Zoom Sample
Collapse Visual Basic SamplesVisual Basic Samples
Patch
DI View
MiniCAD
Data Flow
Cross View
Cloud
Planar Ops
Calculator
Light
Pick
Object Array
Label
Symmetry
Transform
Morph
Line Strip
Capture
Collapse Delphi SamplesDelphi Samples
KernelCAD and Delphi
3DBugger
Data Flow
BoolOp
Calculator
Cannon
Collision
Label
LabelEx
Metrics
MiniCAD
ModelingCurves
Object Array
Patch
Patchwork
Pipes
Collapse 3D Debugger3D Debugger
Creating and editing models
Editing Generic 3D Objects
Topological Commands
Model Explorer
Export / Import
Modeling Tips
3D Debugger
Collapse EditorsEditors
Form View
3D View
Collapse 2D Editors2D Editors
Crossection View
Profile View
Drum View
Collapse DialogsDialogs
3D Curve Dialog
Symmetry Collection Editor
Clip Editor
Material Editor
Surface options dialog
Collapse Modelling TutorialsModelling Tutorials
Table Tutorial
Mouse Tutorial
Collapse DeploymentDeployment
Redistribution
Registration
Deploy Module Tutorial
WixDeploy Tutorial
DeployWixBasic
Deploy Tutorial
Licensing
Model Viewer
Open C++ Source
Technical Support
Skip Navigation LinksHome Page > KernelCAD Components > Interfaces > Open Cascade Technology > GP > IKO_gp_Trsf
IKO_gp_Trsf

IKO_gp_Trsf Interface


Defines a transformation in 3D space. The following transformations are implemented : . Translation, Rotation, Scale . Symmetry with respect to a point, a line, a plane. Complex transformations can be obtained by combining the previous elementary transformations using the method Multiply. The transformations can be represented as follow :

V1 V2 V3 T XYZ XYZ

| a11 a12 a13 a14 | | x | | x'|

 | a21 a22 a23 a24 | | y | | y'|

| a31 a32 a33 a34 | | z | = | z'|

| 0 0 0 1 | | 1 | | 1 |

SetMirror
SetMirror2
SetMirror3
SetRotation
SetRotation2
SetScale
SetDisplacement
SetTransformation
SetTransformation2
SetTransformation3
SetTranslation
SetTranslation2
SetTranslationPart
TranslationPart
SetScaleFactor
SetValues
GetRotation
Value
Invert
Multiply
Transforms
Transforms2

HRESULT SetMirror(DIPoint* P)

Makes the transformation into a symmetrical transformation. P is the center of the symmetry


HRESULT SetMirror2(IKO_gp_Ax1* A1)

Makes the transformation into a symmetrical transformation. A1 is the center of the axial symmetry.


HRESULT SetMirror3(IKO_gp_Ax2* A2)

Makes the transformation into a symmetrical transformation. A2 is the center of the planar symmetry and defines the plane of symmetry by its origin, "X
Direction" and "Y Direction".


HRESULT SetRotation(IKO_gp_Ax1* A1, double Ang)

Changes the transformation into a rotation. A1 is the rotation axis and Ang is the angular value of the rotation in radians.


HRESULT SetRotation2(IKO_gp_Quaternion* rotation)

Changes the transformation into a rotation defined by quaternion. Note that rotation is performed around origin, i.e. no translation is involved.


HRESULT SetScale(DIPoint* P, double S)

Changes the transformation into a scale. P is the center of the scale and S is the scaling value.


HRESULT SetDisplacement(IKO_gp_Ax3* FromSystem1, IKO_gp_Ax3* ToSystem2)

Modifies this transformation so that it transforms the coordinate system defined by FromSystem1 into the one defined by ToSystem2. After this modification, this transformation transforms: the origin of FromSystem1 into the origin of ToSystem2, the "X Direction" of FromSystem1 into the "X
Direction" of ToSystem2, the "Y Direction" of FromSystem1 into the "Y
Direction" of ToSystem2, and the "main Direction" of FromSystem1 into the "main
Direction" of ToSystem2. Warning When you know the coordinates of a point in one coordinate system and you want to express these coordinates in another one, do not use the transformation resulting from this function. Use the transformation that results from SetTransformation instead. SetDisplacement and SetTransformation create related transformations: the vectorial part of one is the inverse of the vectorial part of the other.


HRESULT SetTransformation(IKO_gp_Ax3* FromSystem1, IKO_gp_Ax3* ToSystem2)

Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x', y', z') which are relative to a target coordinate system, but which represent the same point The transformation is from the coordinate system "FromSystem1" to the coordinate system "ToSystem2". Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Trsf T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2);


HRESULT SetTransformation2(IKO_gp_Ax3* ToSystem)

Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x', y', z') which are relative to a target coordinate system, but which represent the same point The transformation is from the default coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax3 ToSystem. Use in the same way as the previous method. FromSystem1 is defaulted to the absolute coordinate system.


HRESULT SetTransformation3(IKO_gp_Quaternion* R, DIVect* T)

Sets transformation by directly specified rotation and translation


HRESULT SetTranslation(DIVect* V)pt -[in,out] Point to mirror

Changes the transformation into a translation. V is the vector of the translation.


HRESULT SetTranslation2(DIPoint* P1, DIPoint* P2)

Makes the transformation into a translation where the translation vector is the vector (P1, P2) defined from point P1 to point P2.


HRESULT HRESULT SetTranslationPart(DIVect* V)

Replaces the translation vector with the vector V.


HRESULT SetScaleFactor(double S)


HRESULT SetValues(double a11, double a12, double a13, double a14, double a21, double a22, double a23, double a24, double a31, double a32, double a33, double a34, double Tolang, double TolDist)

Sets the coefficients of the transformation. The transformation of the point x,y,z is the point x',y',z' with : x' = a11 x + a12 y + a13 z + a14 y' = a21 x + a22 y + a23 z + a24 z' = a31 x + a32 y + a43 z + a34 Tolang and TolDist are used to test for null angles and null distances to determine the form of the transformation (identity, translation, etc..). The method Value(i,j) will return aij. Raises ConstructionError if the determinant of the aij is null. Or if the matrix as not a uniform scale.


HRESULT TranslationPart(DIVect* V)

Returns the translation part of the transformation's matrix


HRESULT GetRotation(IKO_gp_Quaternion** rotation)

Returns the boolean True if there is non-zero rotation. In the presence of rotation, the output parameters store the axis and the angle of rotation. The method always returns positive value "theAngle", i.e., 0. < theAngle <= PI. Note that this rotation is defined only by the vectorial part of the transformation; generally you would need to check also the translational part to obtain the axis (gp_Ax1) of rotation.


HRESULT Value(int Row, int Col, double* d)

Returns the coefficients of the transformation's matrix. It is a 3 rows * 4 columns matrix. This coefficient includes the scale factor. Raises OutOfRanged if Row < 1 or Row > 3 or Col < 1 or Col > 4


HRESULT Invert()HRESULT Invert()

Computes the reverse transformation Raises an exception if the matrix of the transformation is not inversible, it means that the scale factor is lower or equal to Resolution from package gp. Computes the transformation composed with T and . In a C++ implementation you can also write Tcomposed = Example : Trsf T1, T2, Tcomp; ............... Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) Pnt P1(10.,3.,4.); Pnt P2 = P1.Transformed(Tcomp); //using Tcomp Pnt P3 = P1.Transformed(T1); //using T1 then T2 P3.Transform(T2); // P3 = P2 !!!


HRESULT MultiplyHRESULT Multiply(IKO_gp_Trsf* T)

Computes the transformation composed with T and . In a C++ implementation you can also write Tcomposed = * T. Example : Trsf T1, T2, Tcomp; ............... //composition : Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) // transformation of a point Pnt P1(10.,3.,4.); Pnt P2 = P1.Transformed(Tcomp); //using Tcomp Pnt P3 = P1.Transformed(T1); //using T1 then T2 P3.Transform(T2); // P3 = P2 !!! Computes the transformation composed with and T. = T *


HRESHRESULT Transforms(double* X, double* Y, double* Z)

Transformation of a triplet XYZ with this


HRESULT Transforms2(DIPoint* P)

Transformation of P with this