DG Kernel Documentation


Skip Navigation Links.
Start page
Quick Start
Search Page
Installation
Overview of the software
What is new
Licensing
Collapse ModelsModels
Collapse DG Kernel ComponentsDG Kernel Components
Collapse API ReferenceAPI Reference
Interface List
Vector Space
Collapse General GeometryGeneral Geometry
Collapse ModelModel
Collapse ViewView
Collapse General ComputingGeneral Computing
Collapse Samples and TutorialsSamples and Tutorials
Collapse GraphicsGraphics
Collapse Math ObjectsMath Objects
Collapse DeprecatedDeprecated
Redistribution
Model Viewer
Open Source
Support
Skip Navigation Links Search Documentation


IKO_gp_GTrsf2d Interface


Defines a non persistent transformation in 2D space.
This transformation is a general transformation.
It can be a Trsf2d from package gp, an affinity, or you can
define your own transformation giving the corresponding
matrix of transformation.

With a GTrsf2d you can transform only a doublet of coordinates
XY. It is not possible to transform other geometric objects
because these transformations can change the nature of non-
elementary geometric objects.
A GTrsf2d is represented with a 2 rows * 3 columns matrix :

V1 V2 T XY XY
| a11 a12 a14 | | x | | x'|
| a21 a22 a24 | | y | | y'|
| 0 0 1 | | 1 | | 1 |

Query IKO_Standard_Object from this interface to create a copy or obtain the type name

Methods

Init
Init1
Init2
SetAffinity
SetValue
SetTranslationPart
SetTrsf2d
SetVectorialPart
IsNegative
IsSingular
Form
TranslationPart
VectorialPart
Value
Invert
Inverted
Multiply
Multiplied
PreMultiply
Power
Powered
Transforms
Transformed
Transforms1
Trsf2d
_CSFDB_Getgp_GTrsf2dmatrix
_CSFDB_Getgp_GTrsf2dloc
_CSFDB_Getgp_GTrsf2dshape
_CSFDB_Setgp_GTrsf2dshape
_CSFDB_Getgp_GTrsf2dscale
_CSFDB_Setgp_GTrsf2dscale

HRESULT Init()

returns identity transformation.


HRESULT Init1(IKO_gp_Trsf2d* T)

Converts the gp_Trsf2d transformation T into a
general transformation.


HRESULT Init2(IKO_gp_Mat2d* M, KC2D* V)

Creates a transformation based on the matrix M and the
vector V where M defines the vectorial part of the
transformation, and V the translation part.


HRESULT SetAffinity(IKO_gp_Ax2d* A, double Ratio)


HRESULT SetValue(int Row, int Col, double Value)

Replaces the coefficient (Row, Col) of the matrix representing
this transformation by Value,
Raises OutOfRange if Row 1 or Row 2 or Col 1 or Col 3


HRESULT SetTranslationPart(KC2D* Coord)


HRESULT SetTrsf2d(IKO_gp_Trsf2d* T)

Assigns the vectorial and translation parts of T to this transformation.


HRESULT SetVectorialPart(IKO_gp_Mat2d* Matrix)

Replaces the vectorial part of this transformation by Matrix.


HRESULT IsNegative(VARIANT_BOOL* ret)

Returns true if the determinant of the vectorial part of
this transformation is negative.


HRESULT IsSingular(VARIANT_BOOL* ret)

Returns true if this transformation is singular (and
therefore, cannot be inverted).
Note: The Gauss LU decomposition is used to invert the
transformation matrix. Consequently, the transformation
is considered as singular if the largest pivot found is less
than or equal to gp::Resolution().
Warning
If this transformation is singular, it cannot be inverted.


HRESULT Form(gp_TrsfFormKO* ret)

Returns the nature of the transformation. It can be
an identity transformation, a rotation, a translation, a mirror
transformation (relative to a point or axis), a scaling
transformation, a compound transformation or some
other type of transformation.


HRESULT TranslationPart(KC2D* ret)

Returns the translation part of the GTrsf2d.


HRESULT VectorialPart(IKO_gp_Mat2d** ret)

Computes the vectorial part of the GTrsf2d. The returned
Matrix is a 2*2 matrix.


HRESULT Value(int Row, int Col, double* ret)

Returns the coefficients of the global matrix of transformation.
Raised OutOfRange if Row 1 or Row 2 or Col 1 or Col 3


HRESULT Invert()


HRESULT Inverted(IKO_gp_GTrsf2d** ret)

Computes the reverse transformation.
Raised an exception if the matrix of the transformation
is not inversible.


HRESULT Multiply(IKO_gp_GTrsf2d* T)


HRESULT Multiplied(IKO_gp_GTrsf2d* T, IKO_gp_GTrsf2d** ret)

Computes the transformation composed with T and me.
In a C++ implementation you can also write Tcomposed = this * T.
Example :
GTrsf2d T1, T2, Tcomp; ...............
//composition :
Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
// transformation of a point
XY P(10.,3.);
XY P1(P);
Tcomp.Transforms(P1); //using Tcomp
XY P2(P);
T1.Transforms(P2); //using T1 then T2
T2.Transforms(P2); // P1 = P2 !!!


HRESULT PreMultiply(IKO_gp_GTrsf2d* T)


HRESULT Power(int N)


HRESULT Powered(int N, IKO_gp_GTrsf2d** ret)

Computes the following composition of transformations
this * this * .......* me, N time.
if N = 0 this = Identity
if N 0 this = me.Inverse() *...........* me.Inverse().


HRESULT Transforms(KC2D* Coord)


HRESULT Transformed(KC2D* Coord, KC2D* ret)


HRESULT Transforms1(double* X, double* Y)

Applies this transformation to the coordinates:
- of the number pair Coord, or
- X and Y.

Note:
- Transforms modifies X, Y, or the coordinate pair Coord, while
- Transformed creates a new coordinate pair.


HRESULT Trsf2d(IKO_gp_Trsf2d** ret)


HRESULT _CSFDB_Getgp_GTrsf2dmatrix(IKO_gp_Mat2d** ret)


HRESULT _CSFDB_Getgp_GTrsf2dloc(KC2D* ret)


HRESULT _CSFDB_Getgp_GTrsf2dshape(gp_TrsfFormKO* ret)


HRESULT _CSFDB_Setgp_GTrsf2dshape(gp_TrsfFormKO p)


HRESULT _CSFDB_Getgp_GTrsf2dscale(double* ret)


HRESULT _CSFDB_Setgp_GTrsf2dscale(double p)